M

Low Power Reference Platform

Reference Guide

Revision History

Rev.	Date	Author	Description
1	7/07	SJK	Production Release

1

Introduction

It has not been previously feasible to consider FPGA's that are powered by portable battery sources. However reductions in device geometries have significantly reduced static and dynamic power requirements for these devices. The LPRP demonstrates board and chip level low power design techniques for Nios II / SOPC Builder designs that are battery powered.

Power is conserved at the chip level by

- Dynamically reducing clock frequencies during periods of inactivity
- Shutting the FPGA down (with context save) after further inactivity
- Powering the FPGA up (with context restore) once activity returns

Power is conserved at the board level by

- [•]Lower power requirements of inactive devices
- Turning power off to unused devices
- Using efficient power conversion devices
- Using devices with very low standby power

The LPRP is powered by a number of different sources. These include

- •A USB Power interface
- A Wall Power supply (not included)
- Lithium Ion rechargeable batteries

The LPRP features a Board Level *Power Management Framework (PMF)*. This framework uses techniques to conserve power in the Cyclone III FPGA and at the board level. The PMF is a layer of software run on the Nios II processor in the Cyclone III FPGA and on an additional micro controller.

The PMF permits the highest level of power conservation while retaining the operational status of the LPRP. This is the key ingredient to obtaining extended battery life. The PMF will be discussed subsequently.

2

LPRP Board Description

LPRP Block Diagram

The LPRP block diagram is shown in Figure 1. The complementary LPRP board layout is shown in Figure 2.

Refer to the LPRP Schematics for more board level detail.

Power Circuit Block Diagram

The power circuit block diagram is shown in Figure 3.

Power Sources

The LPRP has three potential power sources; wall power, USB power or Li Ion power. The LTC3455 is a one chip, efficient power solution for all three sources. If all three power sources are available, the 3455 will always use wall power or USB power. If neither of these are available it will then use battery power.

Press the power button to turn the LPRP board on or off.

When the board is turned on all power circuits are activated and the applications run in full power mode. The board then transcends into other power modes based on context, time, temperature or user settings.

LTC3455 (U11)

The LTC3455 is designed to be a complete power management solution for a wide variety of portable systems. The device incorporates two current mode step-down switching regulators, a full-featured battery charger, a USB power controller, a Hot Swap output and a low-battery comparator. Refer to Figure 4 for a functional block diagram.

When only battery power is available, the battery PMOS switch connects the VMAX pin to the VBAT pin to provide power to both switching regulators (and any other devices powered (from VMAX). When external power is applied, the LTC3455 seamlessly transitions from battery power (a single-cell (Li-Ion) to either the USB supply or a wall adapter.

When the battery PMOS switch is turned off, the charger is activated and all internal power for the device is drawn from the appropriate external power source. Maximum charge current and charge time are programmed using an external resistor and capacitor, respectively. The USB power manager provides accurate current limiting for the USB pin under all conditions.

The USB power controller section of the LTC3345 will only be enabled when the USB interface is in USB High Power mode.

The LTC3345 provides a supply for hot swappable devices such as a Secure Digital (SD) Card. These devices that would appear as a short if they were hot-plugged directly to one of the supply outputs

Figure 4 . LT3455 Functional Block Diagram

Explaining The LTC3455 Functional Diagram

The functionality of this power controller can be divided into two main categories. 1. External Power sources are present. 2. Only Battery power is present. The LTC3455 includes two switch mode power supplies. The LPRP uses switcher 1 to derive 3.3V and switcher 2 to derive 1.2V. Switcher 2 powers the core of the FPGA. The 3.3V from switcher 2 is used to power the HCS08 uC and is also used to derive all other board level voltages, except for 12V.

When external power is present, since power conservation is not as significant, switcher 1 (3.3V) will be turned on. This will in turn power the HCS08 uC. When only battery power is present, both switchers will be disabled until the ON# signal is asserted.

ON# – This signal enables either of the switch mode power supplies when asserted low. It will be asserted if the momentary POWER ON pushbutton is pressed or if USB power is present. It is over-ridden when external power is present

PWRON – This signal is asserted by the HCS08 uC and is used to hold switcher 1 on once the POWER ON pushbutton has been released. In this reference design the HCS08 will be used to keep real time while the rest of the board is off, so once switcher 1 is on it will not be turned off unless there is no external power and the battery has discharged. In designs where keeping real time is not an objective, this signal can be deasserted during a board level POWER OFF condition.

ON2 – This is asserted by the HCS08 uC. It enables switcher 2 (1.2V). It will be asserted after a pushbutton POWER ON event, external power is available or an AWAKE event has occurred.

HSON - This signal enables power to the 3.3V HS supply. The FPGA asserts this signal when it detects that an SD card has been inserted. This allows power to ONLY be provided to the SD card once it is completely made contact with the socket VCC and GND contacts.

There are a few miscellaneous control and status signals that the FPGA interface with. They are shown in Table 1. They are connected to output and input PIO peripherals in the FPGA.

Table 1. LTC3455 Signals							
Signal	Direction	LTC3473 Pin	FPGA Pin				
BURST_MODE	Input	21	U4				
CHRG_N	Output	4	U9				
LBO_N	Output	17	V9				

LT1761-1.8 (U12, U16)

U12 provides 1.8V for the CFI Flash device and VCCIO for the FPGA. They are enabled by the ENABLE 1 control signal from the HCS08 micro-controller .

U16 provides an isolated 1.8V supply to the CellularRAM device which remains on during Hibernation mode.

LT1762-2.5 (U14)

U14 provides 2.5V to the FPGA that is used to power VCCA, the analog supply for its PLLs. It was chosen for this function because it provides very good Input Ripple Rejection.

LTC3473 (U15)

U15 provides the OLED display with 12.5V. It is enabled via a signal from an SOPC Builder PIO in the FPGA (DISPLAY_POWER_ENABLE). This is shown in Table 2.

Table 2. Enable_12V Signal								
Signal	PIO BIT POSITION	Direction	LTC3473 Pin	FPGA Pin				
ENABLE 12V	0	Input	6	P6				

Monitoring Power

Circuitry has been included to allow for dynamic monitoring of power consumption. Small resistors have been added in series with the 1.2 and 3.3V switcher outputs. The current flowing through these resistors is fed into a current sense amplifier. This in turn is fed into ADC's in the LTC1863L ADC. This information is communicated through the SPI interface to the Nios II processor. This info can be displayed on the OLED display.

LTC6800 (U5, U7)

This is an instrumentation amplifier and is used to dynamically measure power usage on the two main voltage supplies, 1.2V and 3.3V. All other supplies are derived from the 3.3V supply. Low value (.03 Ω and 0.1 Ω) resistors are placed in series with the output of the 1.2V and 3.3V switcher supplies. The voltages measured across these resistors are then fed into the inputs of the LTC6800 and amplified by a factor of 51.

LTC1863L Analog to Digital Converter (U6)

This is 12-bit, eight channel ADC. Two of the channels are used to sample the current drawn from the 3.3V and 1.2V supplies respectively. One of the channels is used as an analog GND reference. The remaining five channels are available for general purpose functions and are connected to the user I/O header.

The ADC communicates converted data to the FPGA via the 12 bit SPI interface. The ADC is used in a unipolar mode. Data is shifted out MSB first. It has a range of 0 to 2.5V and uses an internal reference. The power measured digitally across the current sense resistors can be expressed as

 $Power_{3.3V} = 395.0298uW * converted data$

 $Power_{1.2V} = 478.8240 uW * converted data$

Please note that the direction is defined with respect to the discrete device and not the FPGA.

Table 3. LTC1863L Control Signals						
SPI Slave interface, 12 b	oits, MSB fir	st, 128 kHz				
Signal	Direction	LTC1863L Pin	FPGA Pin			
ADC_SPI_DIN	Input	14	U1			
ADC_SPI_DOUT	Output	13	N1			
ADC_SPI_CLK	Input	12	M6			
ADC_SPI_CS_N	Input	11	N6			

HCS08 Micro-controller (U4)

The HCS08 performs overall power management functions for the LPRP. The HCS08 is always on if external power is applied., running in an ultra low power mode (500nA) when the board is off. Its power is provided by SW1. SW1 will always be on if either USB or Wall power is available or if the battery voltage is above 3.0V. SW1 consumes 100uA when operational. The HCS08 determines when SW2 and all other board boost regulators and LDOs are enabled. The HCS08 block diagram is shown in Figure 5 and a pin list is shown in Table 4.

HCS08 Pin List

Table 4. HCS08 Signals					
Signal	Direction	Description	HCS08 Pin	FPGA Pin	
Power					
VCC			3		
GND			4		
Crystal					
XTAL	Input	Crystal input	6		
EXTAL	Input	Crystal input	5		
Debug					
BKGD	Input	Background debug	2		
External Components	6				
PBSTAT	Input	Push Button Status	13		
BUTTON INT	Input	Button Interrupt	16		
PB/Reset	Input	3455 Reset	1		
LTC3455					
ON2	Output	Turns Switcher #2 (1.2V) on	15		
PWRON	Output	Keeps Switcher #1 (3.3V) on	14		
FPGA	SPI Master	interface, 8 bits,	MSB first	·	
MISO	Output	SPI	8	U12	
MOSI	Output	SPI	9	U13	
SPI CLK	Output	SPI	10	P10	
External Supplies					
ENABLE1#	Output	FET enable	7		
ENABLE1	Output	LDO enable	11		
ENABLE0	Output	LDO enables	12		

HCS08 to FPGA Communication

The HCS08 uses a SPI master peripheral to communicate with a SPI slave peripheral in the Cyclone III FPGA. It uses a simple protocol to coordinate activities with the Cyclone III. Commands included are:

LM4921 Dual Audio DAC (U17)

This device is has two interface ports. The first is a 16 bit SPI slave and is used to access the operating modes of the device as well as set its volume levels. Audio is transmitted to the LM4921 via an I2S interface. Each I2S word is 32 bits wide representing two 16 bit audio channels (left and right).

The LM4921 can be placed in low power NAP and SLEEP modes via SPI commands. The LM4921 requires an audio rate clock to drive the dual DAC's at a 44.1 or 44.8 kHz audio sampling rate. An 11.2896 Mhz clock is driven in to the AUDIO CLK pin.

Table 5. LM4921 Control Signals					
SPI Slave interface, 16 k	oits, LSB firs	st, 128 kHz			
Signal	Direction	LM4921 Pin	FPGA Pin		
AUDIO_SPI_DATA	Input	E4	M1		
AUDIO_SPI_EN	Input	D3	R1		
AUDIO_SPI_CLK	Input	E3	M5		
I2S Slave interface, 32 b	oits, MSB firs	st, 11.2896 MHz			
Signal	Direction	LM4921 Pin	FPGA Pin		
AUDIO_I2S_DATA	Input	C2	L6		
AUDIO_I2S_WS	Input	B2	T1		
AUDIO_I2S_CLK	Input	B1	R5		
AUDIO_CLK	Input	E2	M2		

Memory Devices

CFI Parallel Flash (U2)

The LPRP uses Intel P30 256Mb StrataFash to configure the FPGA at power on and to store its embedded application. The board is layed out with one extra address line to also allow use of the P30 512Mb device. At power on the FPGA's reads configuration in 16 bit half words from the Flash device. This is performed as a burst operation and the FPGA is configured in approximately 9 mS.

After configuration the FPGA enters User Mode and the Nios II processor copies the LPRP application code from Flash to CellularRAM. At this point the Flash device can be placed in Standby mode to conserve power.

The Flash device must be connected to dedicated pins on the FPGA to allow for proper configuration. The pinout is shown in Table 6 below.

Table 6. P30 StrataElash Signals							
Address							
Signal	Direction	P30 Pin	FPGA Pin				
FLASH_A1	Input	A1	E12				
FLASH_A2	Input	B1	A16				
FLASH_A3	Input	C1	B16				
FLASH_A4	Input	D1	A15				
FLASH_A5	Input	D2	B15				
FLASH_A6	Input	A2	A14				
FLASH_A7	Input	C2	B14				
FLASH_A8	Input	A3	A13				
FLASH_A9	Input	B3	B12				
FLASH_A1	Input	C3	A12				
FLASH_A11	Input	D3	B12				
FLASH_A12	Input	C4	A11				
FLASH_A13	Input	A5	B11				
FLASH_A14	Input	B5	C10				
FLASH_A15	Input	C5	D10				
FLASH_A16	Input	D7	E10				
FLASH_A17	Input	D8	C9				
FLASH_A18	Input	A7	D9				
FLASH_A19	Input	B7	A7				
FLASH_A20	Input	C7	A6				
FLASH_A21	Input	C8	B18				
FLASH_A22	Input	A8	C17				
FLASH_A23	Input	G1	C18				
FLASH_A24	Input	H8	G14				
FLASH_A25	Input	B6	H17				

Г

Data						
Signal	Direction	P30 Pin	FPGA Pin			
FLASH_D0	Bidir	F2	H3			
FLASH_D1	Bidir	E2	D1			
FLASH_D2	Bidir	G3	A8			
FLASH_D3	Bidir	E4	B8			
FLASH_D4	Bidir	E5	B7			
FLASH_D5	Bidir	G5	C5			
FLASH_D6	Bidir	G6	E8			
FLASH_D7	Bidir	H7	A4			
FLASH_D8	Bidir	E1	B4			
FLASH_D9	Bidir	E3	E7			
FLASH_D10	Bidir	F3	A3			
FLASH_D11	Bidir	F4	B3			
FLASH_D12	Bidir	F5	D5			
FLASH_D13	Bidir	H5	B5			
FLASH_D14	Bidir	G7	A5			
FLASH_D15	Bidir	E7	B6			
Control						
FLASH_WAIT	Output	F7	H13			
FLASH_ADV_N	Input	F6	H14			
FLASH_CLK	Input	E6	H4			
FLASH_RST_N	Input	D4	C3			
FLASH_OE_N	Input	F8	D17			
FLASH_CE_N	Input	B4	E2			
FLASH_WP_N	Input	C6	H1			
FLASH WE	Input	G8	D18			

CellularRAM (U3)

CellularRAM was included because of its ability to automatically transition to a very low power standby mode (65uA @ 1.8V). It is a low cost but dense memory (32Mb) device that can be run at 80 Mhz in a burst operating mode. It is based on PSRAM technology and provides a very easy to use interface.

An SOPC Builder CellularRAM controller was specially developed for the LPRP. It allows unlimited burst length operation from an Avalon master. This allows for very efficient instruction and data cache line fill and DMA operations.

When the board is placed in Hibernation mode, the CellularRAM remains powered and retains the context of the LPRP application and the Nios II processor.

Secure Digital Card (J2)

Secure Digital defines two optional interface formats, the first a serial SPI format and the other a four bit wide parallel format (SD mode). The LPRP uses the SPI format, but the signals for the alternate format are connected from the FPGA to the SD card connector.

The SPI interface is driven by a dedicated SOPC Builder peripheral (sd_controller_0). The rest of the SD signals are connected to a standard PIO port. The SD Controller signals are defined in Table 7 and the PIO signals are defined in Table 8.

Table 7. SD_CONTROLLER_0 Signals						
SPI Mode Signal	SD Mode Signal	Direction	SD Pin	FPGA Pin		
SD_CARD_SPI_MISO	SD_D[0]	Output	7	V16		
SD_CARD_SPI_MOSI	SD_CMD	Input	2	U14		
ADC_SPI_CLK	SD_CLK	Input	5	T6		
SD_CARD_SPI_CS_N	SD_D[3]	Input	1	V14		

Table 8. SD CARD IO Signals						
SPI Mode Signal	PIO BIT POSITION	Direction	SD Pin	FPGA Pin		
SD_PROTECT_N	0	Output	11	V10		
SD_DETECT_N	1	Output	10	U10		
SD_D[2]	2	Output	9	V15		
SD_D[1]	3	Output	8	R11		

The SD card can be inserted or removed while LPRP power is on. Power is not applied to the SD connector until the SD_DETECT signal is asserted. A switch in the LTC3455 device is then turned on and power to the DS is applied through the dedicated VCC3HS power signal. The switch is controlled by an SOPC Builder PIO peripheral. A zero disables SD Power and a one enables SD Power. This signal is shown in Table 9.

Table 9. SD HSEN Signal							
Signal	PIO BIT POSITION	Direction	LTC3455 Pin	FPGA Pin			
HSEN	0	Input	15	V1			

OLED Display (J7)

The OSRAM Full Moon Display is a 96 x 64 bit mapped display. It has a built in controller and display memory. It is connected to the FPGA via a parallel interface. The display signals are shown in Table 10.

Table 10. OLED Signals	1		
Signal	Direction	J7 Pin	FPGA Pin
DISPLAY_D7	Bidir	5	L2
DISPLAY_D6	Bidir	6	L1
DISPLAY_D5	Bidir	7	K2
DISPLAY_D4	Bidir	8	K1
DISPLAY_D3	Bidir	9	K5
DISPLAY_D2	Bidir	10	L4
DISPLAY_D1	Bidir	11	L3
DISPLAY_D0	Bidir	12	P2
DISPLAY_ERD_N	Input	13	P1
DISPLAY_RW_N	Input	14	R2
DISPLAY_DC_N	Input	15	Т3
DISPLAY_BSI	Input	16	R3
DISPLAY_RES_N	Input	17	L5
DISPLAY_CS_N	Input	18	R4

User Pushbuttons (SW2-SW7)

These are general purpose pushbuttons that are also defined for use with the LPRP applications. They are connected to an input PIO peripheral in the FPGA and an interrupt is generated to the Nios II processor if they are pressed. They are also diode OR'ed together. This common signal, BUTTON_INT_N, is to interrupt HCS08 and remove the LPRP from Hibernation mode. The pushbutton connections are shown in Table 11.

Table 11. User Pushbutton Signals						
Signal	SW	FPGA Pin	LPRP Function			
USER_PB0	2	V6	Left			
USER_PB1	3	U9	Right			
USER_PB2	4	P9	Up			
USER_PB3	5	R8	Down			
USER_PB4	6	V5	Esc			
USER_PB5	7	V4	Enter			
BUTTON_INT_N		N2				

User LEDs

These are general purpose LEDs. Relative to the rest of design they draw significant power when turned on and can shorten battery life considerably. They can be used efficiently if connected to a PWM peripheral in the FPGA where there effective brightness is reduced due to short percentages of ON time. In this design they are connected to a simple output PIO peripheral. To turn an LED ON write a one to the appropriate bit position in the PIO. THE User LED signals are shown in Table 12.

Table 12. User LED Signals				
User LED Signal	PIO BIT POSITION	FPGA Pin		
USER_LED0	0	T2		
USER_LED1	1	M3		
USER_LED2	2	U8		
USER_LED3	3	V7		

User IO (J8)

The User IO header provides access to twelve FPGA IO pins and five Analog to Digital Converter inputs. The digital IO signals have 330 Ω series current limiting resistors to protect the FPGA IO pins. The User IO signals are shown in Table 13.

Table 13. User IO Signa	ls		
Signal	J8 Pin	ADC Pin	FPGA Pin
USER_ADC_IN0	4	3	
USER_ADC_IN0	6	4	
USER_ADC_IN0	8	5	
USER_ADC_IN0	10	6	
USER_ADC_IN0	12	7	
USER_IOT1	16		V3
USER_IOT2	18		V8
USER_IOT3	20		T4
USER_IOT4	22		N7
USER_IOT5	24		U5
USER_IOT6	26		P8
USER_IOT7	28		U7
USER_IOT8	30		N8
USER_IOT9	32		N9
USER_IOT10	34		P7
USER_IOT11	36		U3
USER_IOT12	38		Т8
VCC3S	1		

Г

Signal	J8 Pin	ADC Pin	FPGA Pin
AGND2	3		
AGND2	5		
AGND2	7		
AGND2	9		
AGND2	11		
GND	13		
GND	15		
GND	17		
GND	19		
GND	21		
GND	23		
GND	25		
GND	27		
GND	29		
GND	31		
GND	33		
GND	35		
GND	37		
GND	39		
GND	14		
GND	40		

Power Consumption

Power was measured on all of the supplies and tabulated in Table 15. Battery life was verified empirically and calculated based on a Li-Ion 3.7V battery @ 2300maH. The battery will charge off USB power at **395mA** when the LPRP is in the **Power Off** mode and at **259mA** when the LPRP is in **Normal** mode. There is leakage from the battery in Hibernate and Power Off modes. Efforts will be made to isolate the issue and reduce the dissipation in these two mode to less than 1mW

Table 15. Po	ower Con	sumption	(in mW)					
Mode	1.2V	1.8V	1.8VS	2.5V	3.3VS	3.3V	12.5V	VBAT
Normal	168	15	11.7	104	249.5	281	82.8	613
Reduced	168	15	11.7	104	237.6	271	0	492
Standby	35	3.9	7.2	104	206.6	215	0	276
Hibernate	0	0	180uW	0	0	660uW	0	7.5
Power Off	0	0	0	0	0	0	0	3.75

3

Embedded Architecture

Block Diagram

The embedded block diagram is shown in Figure 6. The Embedded system was constructed using SOPC Builder. It includes Nios II, a 32 bit RISC, 105 Dhrystone MIP processor and a collection of peripherals

All of the blocks, except those outlined in red, are standard SOPC Builder peripherals. Documentation for them is extensive and can be found online at the Embedded Peripherals literature page. The new peripherals shown in red are detailed later in this document. A simplified SOPC Builder block diagram is shown in Figure 7.

To conserve power, peripherals were grouped into clock domains. Three main domains are defined. The fastest is the "clk" domain (80 MHz). The Nios II processor, Audio DMA and defined "clk" peripherals are grouped together. Avalon to Avalon Bridges are then used to isolate "slow clk" (20 MHz) peripherals and "ultra slow clk" (3 MHz) peripherals from the "clk" domain. Peripherals associated with the respective clock domains are shown in Table 15. These are not yet fully optimized and a few peripherals can be moved to slower domains.

Table 15. Clock Domains and Asso	ciated Peripher	rals	
Peripheral	clk	slow clk	ultra slow clk
ext_flash			
ext_ram			
display			
sd_controller_0			
audio spi			
audio_i2s			
audio_dma			
uc_spi			
high_res_timer			
jtag_uart_0			
timer_0			
adc_spi			
display_power_enable			
pb_int			
user_pb			
user_led			\checkmark
sd_card_io			
user_io			
battery_charge_indicator			
battery_low_indicator			
burst_mode_power			
sopc_clock_sel			
sopc clock disable			

Nios II Custom Instruction

The MP3 player application makes use of the <u>MAD MP3 decoder</u> to decode compressed MP3 data into hi-fidelity quality audio. The decoder makes significant use of a multiply and shift function. This function was used extensively throughout the decoder and occupied a significant portion of the processors bandwidth.

The MAD decoder is intended to run on processors at a significantly higher frequency than 80 MHz and as such they have the ability to perform the decode as a software algorithm. Nios II does not have enough processing capability to do so at 80 MHz. Nios II does however have the ability to customize its instruction set. A <u>Custom Instruction</u> (see Figure 8) was created and added to the LPRP SOPC Builder design. With the addition of this accelerator Nios II had the performance of a processor running at 100's of Mhz, while only using a few hundred mW.

The LPRP MP3 player application was based on work done by <u>Nate Knight</u> @ Altera Corporation

Figure 8. Fmul Custom Instruction

Clock Control

Significant amounts of power can be saved by reducing or turning off clocks to logic that is not being utilized. The LPRP makes use of the Clock Control Blocks in the Cyclone III devices. Two PIO peripherals in the LPRP memory map are used to do this. The *sopc_clock_sel* peripheral controls the CLKSELECT inputs shown in Figure 9. The *sopc_clock_disable* peripheral controls the Enable/Disable portion of the Clock Control Block.

Figure 9. Cyclone III Clock Control Block

New SOPC Builder Peripherals

I2S Interface

The I2S Interface was created by Phillips and is used to transport stereo audio content between semiconductor devices. It is comprised of a 3 wire interface. I2S_CLK, I2S_DATA and I2S_WS.

This IP core supports 16 bit audio resolution at a 44.1kHz or 48 kHz sample rate. The Audio clock that drives this core must be derived from the following equation

Audio clock = $16 \times 2 \times 3$ sample rate x 8

Audio clock = 11.2896MHz @ 44.1 kHz Audio clock = 12.288MHz @ 48 kHz The I2S_SCK is used to clock half words of data serially out of the I2S physical layer. I2S_WS identifies whether the half word is for a left or right audio channel. When I2S is low it indicates that the current I2S_DATA is for the left audio channel.

Data is written in words into the Audio FIFO via the Audio Data Register (ADR). A complete left and right audio sample is contained in one word. The data is shifted MSB first from the outbound side of the FIFO. Left channel audio samples must be written into the most significant half of the ADR and right audio samples into least significant half.

The Audio FIFO is 256 samples deep. It will set a FIFO low flag if it contains less than 128 audio samples. This flag can be polled through the status register or will generate an interrupt if interrupts are enabled. The interrupt can be cleared by reading the Interrupt Status Register (ISR).

Figure 11: I2S Transmit Protocol

Register Interface

Table 16 shows the Avalon Slave Registers. All registers are 32-bit aligned to a word boundary. Unused bits should be written as zero.

Table 16. Avalon Slave Registers				
Address (h)	Access	Mnemonic	Name	
00	W	ADR	Audio Data Register	
04	W	CR	Control Register	
08	R	SR	Status Register	

Audio Data Register (ADR)

Table 17 shows the audio data register format.

Table 17. Audio Data Register Format			
Bits	Mnemonic	Description	
150	ASR	Right channel audio sample	
3116	ASL	Left channel audio sample	

Audio samples must be written as a word to the ADR.

Control Register (CR)

Table 18 shows the status register format.

Table 18. Control Register Format			
Bit	Mnemonic	Description	
0	I2S_EN	Enable the I2S physical layer	

Status Register (SR)

Table 19 shows the status register format.

Table 19. Status Register Format			
Bit	Mnemonic	Description	
0	FL	This bit indicates if the level of the FIFO is low	

Display Interface

The OSRAM OLED Display includes an intelligent controller. This is mapped into the SOPC system memory map and can be accessed via read or write I/O instructions from the Nios II CPU.

Table 20 shows these registers. All registers are 32-bit aligned to a word boundary. Unused bits should be written as zero. The Data Register allows access to the displays GDDRAM table. The Control Register allows access to the displays Command Table.

Table 20. Avalon Register Slave Registers				
Address (h)	Access	Mnemonic	Name	
00	W	CR	Control Register	
00	R	SR	Status Register	
04	RW	DR	Data Register	

4

Device Drivers

For further documentation on the SD, Graphics or Power Management Drivers please contact <u>XAPLOS</u>.

5

Utilities

The LPRP is provided with a few script utilities that assist with restoring the board hardware and software images. They can also be used to flash your own .elf and .sof flash files into this design

The utilities can be found in the $\row\kits\lprp\BoardDesignFiles\Flash_Images sub-directory.$ These utilities are shown in Figure 11.

Instruction on how to restore the factory image or add a new user image are shown below.

Figure 11: Flash Utilities	
 Local Disk (C:) arrow kits in the prp in BoardDesignFiles in Flash_Images in Factory User 	Factory

Restoring the factory image

Follow the steps below to restore the factory LPRP image .

1.Connect a USB cable to the LPRP.

- 2. Turn the LPRP Power On.
- 3.Open a Nios II 7.1 Command Shell
- 4.CD to the c:\arrow\kits\lprp\BoardDesignFiles\Flash_Images\Factory directory
- 5.At the command prompt type the following command

[SOPC_Builder]\$ source restore_factory_image_flash_all.sh

Preparing a new User Hardware Image

1.Copy the .sof file from the Quartus II project directory, rename it low power demo.sof and drop it in the User folder.

2.Open a Nios II 7.1 Command Shell

3.CD to the c:\arrow\kits\lprp\BoardDesignFiles\Flash_Images\User directory 4. At the command prompt type the following command

[SOPC Builder]\$ source create hw flash image.sh

🛤 SOPC Builder 7.1	- 🗆 🗙
/cygdrive/c/arrow/kits/lprp/BoardDesignFiles/Flash_Images/User [SOPC Builder]\$ source create_hw_flash_image.sh	_
Please ensure that the latest sof file is present in this directory	
Generate a pof file	
Info: ************************************	

Programming a new User HW Image

Follow the steps below to program a new user hw image into the LPRP.

- 1.Connect a USB cable to the LPRP.
- 2. Turn the LPRP Power On.
- 3. Open a Nios II 7.1 Command Shell
- 4.CD to the c:\arrow\kits\lprp\BoardDesignFiles\Flash Images\User directory
- 5.At the command prompt type the following command

[SOPC_Builder]\$ source program_u2_flash_hw.sh

Preparing a new User Software Image

1.Copy the *ext_flash_flash* file from the <software>\Debug directory, rename it *lprp_sw.flash* and drop it in the User folder.

Programming a new User SW Image

Follow the steps below to program a new user hw image into the LPRP.

Connect a USB cable to the LPRP.
 Turn the LPRP Power On.
 Open a Nios II 7.1 Command Shell
 CD to the c:\arrow\kits\lprp\BoardDesignFiles\Flash_Images\User directory
 At the command prompt type the following command

[SOPC_Builder]\$ source program_u2_flash_sw.sh

SOPC Builder 7.1	- 🗆 🗙
<pre>/cogdrive/c/arrow/kits/lprp/BoardDesignFiles/Flash_Images/User [SOPC Builder]\$ source program_u2_flash_sw.sh Info: Ended Programmer operation at Tue Jul 10 10:14:50 2007 Loading Programming SOF Image into FPGA 0 errors, 0 warnings Info: Allocated 51 megabytes of memory during processing Info: Allocated 51 megabytes of memory during processing Info: Running Quartus II Programmer Info: Wersion 7.1 Build 156 04/30/2007 SJ Full Version Info: Copyright (C) 1991-2007 Altera Corporation. All rights reserved. Info: Your use of Altera Corporation's design tools, logic functions Info: and other software and tools, and its AMPP partner logic Info: functions, and any output files from any of the foregoing Info: (including device programming or simulation files), and any Info: associated documentation or information are expressly subject Info: Subscription Agreement, Altera MegaCore Function License Info: Mgreement, or other applicable license agreement, including, Info: without limitation, that your use is for the sole purpose of Info: programming logic devices manufactured by Altera and sold by Info: Altera or its authorized distributors. Please refer to the Info: Applicable agreement for further details. Info: Processing started: Tue Jul 10 10:16:12 2007 Info: Command: quartus_pgm -c 1 lprp_hw.cdf Info: Using programming cable "USB-Blaster [USB-0]"</pre>	
00220000 (42%): Programming 6 2007	-

6

Support

For further support please contact your local Arrow FAE.

You may also post a comment or question at the Nios Message Forum

Call 800-777-2776 to connect to the nearest Arrow branch.

Click to locate a specific Arrow branch